ROBOT PENDETEKSI GAS BERACUN DENGAN MENGGUNAKAN METODE MULTI LAYER PERCEPTRON

Gun Gun Maulana, Aris Budiyarto, Vera Suryani

Sari


At present, there are a lot of harmful gases in the environment around us, especially in the industrial environment, such as radiological materials and toxic gases that can pollute the environment. Generally, gases can spread due to leakage. The gas leak was caused by several factors, such as mining accidents, war, and manufacturing accidents. Gas leakage incidents can cause huge losses to society and industry, both injury and financial problems. To reduce this risk we try to propose a toxic gas detection system with two modules used in running this system: (1) navigation module and (2) gas detection module. The navigation module is designed with a program to explore a room with a certain pattern. For movement and data collection will be carried out by the Microsoft Visual Studio interface software. The detection module is designed with Multi Layer Perceptron (MLP) artificial intelligence using the Back Propagation method which is directly applied to the robot, so that the robot is able to accurately and quickly identify gas obtained from the TGS sensor output. The sensors used are TGS 2602 for ammonia (NH3), TGS 2600 for carbon monoxide (CO), TGS 2610 for butane (C4H10), and TGS 2612 for methane (CH4). For this reason, this research is expected to implement electronic nose on mobile robots using the Multi Layer Perceptron method to effectively detect, identify, and confirm that dangerous gas sources have been found without direct human interaction

Teks Lengkap:

Hal 144-154

Referensi


M. Faisal, M. Alsulaiman, K. Al-Muteb, R. Hedjar, H. Mathkour, M. Emaduddin. (2015). Gas Detection and Mapping Using an Autonomous Mobile Robot. Conference Paper.

P. Murvay, I. Silea. (2012). A survey on gas leak detection and localization techniques. Journal of Loss Prevention in the Process Industries, 25 (6), hlm. 966 – 973.

Laurensius Arliman S, Mediasi Melalui Pendekatan Mufakat Sebagai Lembaga Alternatif Penyelesaian Sengketa Untuk Mendukung Pembangunan Ekonomi Nasional, UIR Law Review, Volume 2, Nomor 2, 2018, https://doi.org/10.25299/uirlrev.2018.vol2(02).1587.

G. Ferri, E. Caselli, V. Mattoli, A. Mondini, P. Dario, S. Superiore, S. Anna. (2006). A Biologically-Inspired Algorithm Implemented on a new Highly Flexible Multi-Agent Platform for Gas Source Localization. International Conference on Biomedical Robotics and Biomechatronics, hlm. 573 – 578. Pisa: IEEE.

A. T. Hayes, A. Martinoli, R. M. Goodman. (2002). Distributed odor source localization. Sensors Journal, 2 (3), hlm. 260 – 271. IEEE

S. Soldan, J. Welle, T. Barz, A. Kroll, D. Schulz. (2014). Towards Autonomous Robotic Systems for Remote Gas Leak Detection and Localization in Industrial Environments. Field and Service Robotics. Springer Tracts in Advanced Robotics, 92, hlm. 233 – 247. Berlin: Springer Tracts in Advanced Robotics.

A. T. Hayes, A. Martinoli, R. M. Goodman. (2001). Swarm robotic odor localization. International Conference Intelligent Robot and Systems, 2, hlm. 1073 – 1078. Hawaiian Islands: IEEE.

Laurensius Arliman S, Perlindungan Hukum Terhadap Karya Desain Industri Di Indonesia, Lex Jurnalica, Volume 15, Nomor 2, 2018.

A.S.A. Yeon, R. Visvanathan, S.M. Mamduh, K. Kamarudin, L.M. Kamarudin, A. Zakaria. (2015). Implementation of behaviour based robot with sense of smell and sight. International Symposium on Robotics and Intelligent Sensors, 76, hlm. 119 – 125. Procedia Computer Science.

A. Lilienthal, H. Ulmer, H. Frohlich, A. Stutzle, F. Werner, A. Zell. (2004). Gas source declaration with a mobile robot. International Conference on Robotics and Automation, 2, hlm. 1430 – 1435. Los Angeless: IEEE.

G. Bonow, A. Kroll. (2013). Gas leak localization in industrial environments using a TDLAS-based remote gas sensor and autonomous mobile robot with the Tri-Max method. International Conference on Robotics and Automation, 13, hlm. 1 – 6. Karlsruhe: IEEE.

G. Daqi, C. Wei. (2007). Simultaneous estimation of odor classes and concentrations using an electronic nose with function approximation model ensembles. Sensors and Actuators B: Chemical, 120 (2), hlm. 584 – 594.

A. J. Lilienthal, T. Duckett. (2003). Gas Source Localisation by Constructing Concentration Gridmaps with a Mobile Robot. European Conference on Mobile Robots, hlm. 159 – 164.

I. M. A. Budhana, I. B. A. Swamardika, Y. Divayana. (2017). Rancang Bangun Robot 6WD Dengan Sensor Gas TGS2600 Menggunakan Metode Wall Following Berbasis Arduino Mega 2560. ISSN 2503-2372: Majalah Ilmiah Teknologi Elektro, 17 (1), hlm. 51 – 58.

P. Pelosi, J. Zhu, W. Knoll. (2018). From Gas Sensors to Biomimetic Artificial Noses. Chemosensors, 6 (3), hlm. 32.

F. Rabeb, B. Souhir, K. Abdermaceur, S. Mounir. (2013). An electronic nose for detection pollutant odorant and olfaction classification using neural network. 14th international conference on Sciences and Techniques of Automatic control & computer engineering. Sousse: IEEE.

J. Nugroho, D. Muryani, S. Rahayoe, N. Bintoro. (2008). APLIKASI JARINGAN SYARAF TIRUAN UNTUK IDENTIFIKASI AROMA TEH MENGGUNAKAN ELECTRONIC NOSE. Gelar Teknologi dan Seminar Nasional Teknik Pertanian UGM Yogyakarta.




DOI: https://doi.org/10.33559/eoj.v2i2.411

Refbacks

  • Saat ini tidak ada refbacks.


Jumlah Kunjungan

Negara Pengunjung

Flag Counter

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.