ANALISIS PREDIKSI KELULUSAN UJIAN LABOR PROFESIONAL MAHASISWA UNIVERSITAS METAMEDIA
Sari
Teks Lengkap:
PDFReferensi
Alizadeh, S. H., Hediehloo, A., & Harzevili, N. S. (2021). Multi independent latent component extension of naive Bayes classifier. Knowledge-Based Systems, 213. https://doi.org/10.1016/j.knosys.2020.106646
Ang, K. L. M., Ge, F. L., & Seng, K. P. (2020). Big Educational Data Analytics: Survey, Architecture and Challenges. In IEEE Access (Vol. 8, pp. 116392–116414). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/ACCESS.2020.2994561
Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A novel selective naïve Bayes algorithm ✩. 192, 105361. https://doi.org/10.1016/j.knosys
Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. In IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews (Vol. 40, Issue 6, pp. 601–618). https://doi.org/10.1109/TSMCC.2010.2053532
Wu, C., Zhang, Q., Cheng, Y., Gao, M., & Wang, G. (2021). Novel three-way generative classifier with weighted scoring distribution. Information Sciences, 579, 732–750. https://doi.org/10.1016/j.ins.2021.08.025
Zhang, H., & Jiang, L. (2022). Fine tuning attribute weighted naive Bayes. Neurocomputing, 488, 402–411. https://doi.org/10.1016/j.neucom.2022.03.020
DOI: https://doi.org/10.33559/eoj.v5i2.1492
Refbacks
- Saat ini tidak ada refbacks.
Negara Pengunjung

Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.