PERENCANAAN ULANG SALURAN SEKUNDER D.I BATANG LAMPANG KECAMATAN TALAMAU KABUPATEN PASAMAN BARAT

DELFIA SAFITRI¹, DEDDY KURNIAWAN², SELPA DEWI²

Mahasiswa Program Studi Teknik Sipil, Fakultas Teknik, UM Sumatera Barat¹, Dosen Program Studi Teknik Sipil, Fakultas Teknik, UM Sumatera Barat^{2,3}

email: safitridelfia408@gmail.com¹, deddydk22@gmail.com², selvadewi1109@gmail.com³

Absrtak: Daerah Irigasi Batang Lampang bersumber dari sungai Batang Lampang yang mengairi areal persawahan seluas ±75 Ha. Daerah irigasi Batang Lampang berjarak ± 13 km dari pusat kota Simpang Empat. Tujuan utama dari perencanaan ulang daerah irigasi Batang Lampang Kecamatan Talamau Kabupaten Pasaman Barat adalah untuk mneyediakan kebutuhan air bagi lahan persawahan masyarakat setempat secara optimal agar tercapainya hasil panen yang maksimal. Dalam perencanaan dimensi saluran didapat melalui perhitungan curah hujan dengan menggunakan metode Gumbel dan metode Haspers dengan menggunakan curah hujan maksimum 15 tahun terakhir. Untuk mendapatkan perhitungan debit yang baik diperlukan data pencatatan debit sungai jangka waktu yang panjang, hal ini diperlukan guna mengurangi terjadinya penyimpangan data perhitungan yang terlalu besar. Dalam metode Gumbel didapat hasil curah hujan maksimum 6538 mm dengan menggunakan metode Haspers didapat debit 19,45 m³/detik. Hasil perhitungan debit saluran yang direncanakan untuk D.I Batang Lampang 26,73 m³/detik dalam perencanaan saluran sekunder ini dapat menampung debit air pada saat debit maksimum.

Kata kunci: debit, dimensi saluran, curah hujan, Gumbel, Haspers.

Absrtac: The Batang Lampang irrigation area is sourced from the Batang Lampang river which irrigates a rice field area of \pm 75 Ha rice field area. The Batang Lampang irrigation area is \pm 13 km from the city center of Simpang Empat. the main objective of the redesign of the Batang Lampang irrigation area, Talamau District, West Pasaman Regency is to provide optimal water needs for the rice fieldsn of the local community in order to achieve maximum yields. In planning the channel dimension, it is obtained through the calculation of rainfall using the Gumbel method and the Haspers method using the maximum rainfall of the last 15 years. To get a good discharge data. This is necessary in order to reduce the occurrence of data deviations that are too large. In the Gumbel method, the maximum rainfall is 6538 mm. using the Haspers method, the discharge is 19,45 m³/second. The results of the calculation of the planned discharge for D.I Batang Lampang 26,73 m³/second in this secondary channel design can accommodate water discharge at the time of maximum discharge.

Keyword: discharghe, dimension of rainfall channel, Gumbel, Haspers.

A. Pendahuluan

Irigasi merupakan salah satu faktor penting untuk menunjang keberhasilan petani dalam meningkatkan hasil pertanian. Berdasarkan hal tersebut ketersediaan air yang cukup pada areal pertanian menjadi salah satu jaminannya. Daerah irigasi Batang Lampang terletak di Nagari Kajai, Kecamatan Talamau Kabupaten Pasaman Barat. Daerah irigasi Batang Lampang merupakan salah satu irigasi yang berperan besar dalam mengairi lahan pertanian masyarakat setempat. Daerah Irigasi Batang Lampang mengairi sawah masyarakat dengan luas ± 75 Ha. Gempa yang terjadi di Kabupaten Pasaman Barat juga mengakibatkan galodo di sungai Batang Lampang, dan saluran irigasi tersebut tidak bisa menampung kelebihan air pada saat itu, sehingga dinding saluran irigasi Batang Lampang roboh dan hanyut terbawa oleh arus air tersebut, dan pada saat air mulai normal saluran ini tidak lagi optimal dalam mengairi sawah masyarakat.

B. Metodologi Penelitian

Metodologi penelitian adalah cara yang disusun secara teratur dan digunakan oleh seorang peneliti untuk mengumpulkan data atau informasi dalam melakukan penelitian yang disesuaikan dengan subjek atau objek yang sedang diteliti.

Lokasi Penelitian

Lokasi daerah irigasi Batang Lampang terletak diantara $0.15073~\mathrm{U}~99.93502^{\circ}$ T dengan ketinggian $\pm~347~\mathrm{m}$ di atas permukaan laut tepatnya di Nagari Kajai, Kecamatan Talamau, Kabupaten Pasaman Barat, dengan jarak $\pm~3~\mathrm{km}$ dari permukiman masyarakat setempat yaitu kampung Sei Lampang.

Peta Lokasi Penelitian

Data Penelitian

1. Data Primer

Data primer adalah data yang diperoleh dari hasil survei langsung di lapangan, yang bertujuan untuk mendapatkan informasi yang akurat terkait penelitian yang dilakukan. Data yang diperlukan untuk penelitian ini adalah data Panjang, lebar dan tinggi saluran.

2. Data Sekunder

Menurut Sofyan, (2017) data sekunder merupakan sumber data yang diperoleh secara tidak langsung (sumber kedua), yang biasanya berasal dari instansi terkait penelitian yang dilakukan. Data sekunder yang diperoleh antara lain:

- 1) Data curah hujan
- 2) Data luas lahan sawah
- 3) Debit air sungai

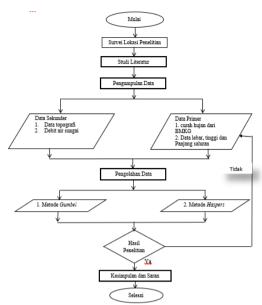
Metode Analisis Data

1. Pengumpulan Data

Pengumpulan data dilakukan secara langsung ke lapangan yang dibagi menajadi dua tahap yaitu: Tahap 1 : melakuan survei lokasi penelitian dan berapa Panjang saluran yang mengalami kerusakan.

Tahap 2 : mengumpulkan data curah hujan, luas lahan sawah, dan debit air sungai.

2. Studi Literatur

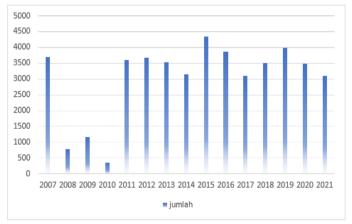

Studi literatur dilakukan guna untuk mendapatkan acuan dalam analisis data serta perhitungan dalam batasan masalah.

3. Metodologi Penelitian

Metode pengolahan data yang digunakan untuk mengolah data adalah:

- 1. Metode Gumbel
- 2. Metode *Haspers*

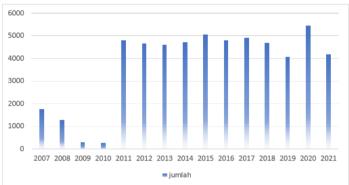
Bagan Alir Penelitian


Bagan Alir Penelitian

C. Hasil Dan Pembahasan

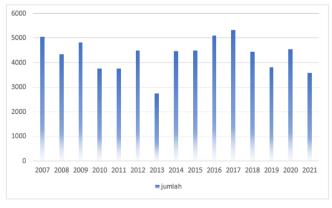
Data curah hujan stasiun Parit

Lahun	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Ags	Sep	Okt	Non	Des	Jmlh
2007	484	194	248	447	179	360	349	133	403	369	193	329	3688
2008	148	62	147	75	0	0	0	34	48	60	130	90	794
2009	26	24	18	145	140	102	45	125	98	110	185	145	1163
2010	115	156	178	198	67	70	80	94	127	40	40	40	356
2011	215	97	366	389	112	288	189	288	429	288	590	347	3598
2012	136	362	165	150	179	151	398	401	305	304	513	608	3672
2013	189	338	421	281	176	109	185	203	331	360	438	508	3538
2014	284	59	250	264	233	135	75	312	245	413	575	297	3142
2015	557	300	322	337	187	306	130	287	371	338	647	568	4350
2016	576	145	392	368	338	299	36	348	177	285	461	429	3854
2017	391	430	193	295	225	145	23	226	342	139	436	242	3087
2018	50	283	254	394	349	77	109	238	346	688	408	309	3505
2019	352	392	293	391	125	134	223	447	297	553	269	501	3977
2020	292	287	396	380	179	144	372	258	344	253	313	271	3489
2021	168	89	430	214	291	247	146	282	352	231	244	414	3108
Rata ²	266	215	272	289	185	171	157	245	281	295	363	340	3021


Grafik data curah hujan stasiun Parit

Data curah hujan stasiun Sukamenanti

Tahun	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Ags	Sep	Okt	Non	Des	Jmlh
2007	0	0	0	0	0	0	0	374	0	617	187	585	1763
2008	41	183	115	90	87	133	105	65,5	105	115,2	161	91	1292
2009	24	39	24	36	16	24	16	64	18	28	0	0	289
2010	0	0	0	30	24	33	7	61	67	0	25	25	272
2011	134	282	398	613	263	321	130	613	390	361	589	714	4806
2012	218	536	285	274	289	243	322	617	250	338	768	523	4662
2013	313	367	451	457	382	251	195	425	300	319	543	607	4609
2014	569	35	257	400	516	174	80	508	230	576	972	390	4706
2015	371	199	305	663	148	472	279	383	433	311	1039	441	5042
2016	262	214	607	356	586	363	291	312	285	459	462	594	4791
2017	328	303	487	508	469	278	115	276	619	316	798	419	4915
2018	148	241	386	431	488	163	190	208	201	980	653	601	4689
2019	330	274	234	294	198	475	457	297	232	472	351	445	4056
2020	320	230	510	589	377	231	775	358	741	309	645	352	5437
2021	195	146	686	259	338	267	317	469	431	279	281	523	4193
Rata ²	217	203	316	333	279	229	219	335	287	365	498	421	3701


Grafik data curah hujan stasiun Sukamenanti

Data curah hujan Stasiun Talamau

Tahun	Jan	Feb	Mar	Apr	Mai	Jun	Jul	Ags	Sep	Okt	Non	Des	Jmlh.
2007	522	436	278	416	357	448	432	308	435	381	471	576	5060
2008	278	347	443	543	445	345	388	381	395	298	271	217	4351
2009	272	241	489	483	462	349	168	478	277	390	596	618	4823
2010	121	443	349	432	308	471	239	322	423	415	753	576	3753
2011	179	121	286	382	216	313	311	185	416	250	522	572	3753
2012	213	455	261	173	299	259	343	753	834	187	299	415	4491
2013	239	121	154	54	173	102	161	465	322	250	423	297	2760
2014	293	115	111	252	280	425	284	714	245	388	835	522	4463
2015	321	157	363	455	460	261	255	396	241	255	792	534	4491
2016	183	213	325	439	403	448	422	296	447	457	723	736	5092
2017	452	242	542	634	581	299	185	259	343	257	753	685	5320
2018	190	258	315	336	311	374	294	299	311	605	834	311	4438
2019	453	167	286	407	242	377	302	187	185	329	311	575	3820
2020	297	374	407	382	399	154	415	306	373	417	572	454	4546
2021	179	136	254	251	506	216	207	313	362	324	348	500	3594
Rata ²	279	25	324	376	363	323	294	378	374	347	567	506	4317

Grafik data curah hujan stasiun Talamu

Data curah hujan maksimum dan minimum

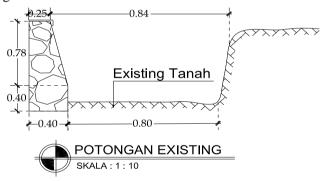
No	Tahun	Stasiun Sukamenant			
		Maksimum	Mimimum		
1	2007	617	0		
2	2008	183	41		
3	2009	64	0		
4	2010	67	0		
5	2011	714	130		
6	2012	768	218		
7	2013	607	195		
8	2014	972	80		
9	2015	1030	148		
10	2016	607	214		
11	2017	980	115		
12	2018	475	148		
13	2019	775	198		
14	2020	686	230		
15	2021	498	146		

Probabilitas frekuensi curah hujan

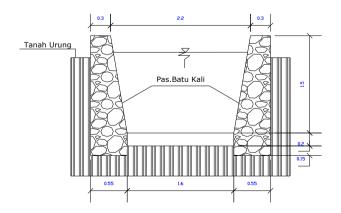
No	Tahun	Xi	xi-x̄	$(xi - \bar{x})^2$
1	2007	617	14,14	199,9396
2	2008	183	-419,86	176282,4196
3	2009	64	-538,86	290370,0996
4	2010	67	-535,86	287145,9396
5	2011	714	111,14	12352,0996
6	2012	768	165,14	27271,2196
7	2013	607	4,14	17,1396
8	2014	972	369,14	136264,3396
9	2015	1030	427,14	182448,5796
10	2016	607	4,14	17,1396
11	2017	980	377,14	142234,5796
12	2018	475	-127,86	16348,1796
13	2019	775	172,14	29632,1796
14	2020	686	83,14	6912,2596
15	2021	498	-104,86	10995,6196
	Jumlah	9043	$\sum (xi - \bar{x})^2$	1318491,734

Hasil perhitungan dengan log person type III

No.	Tahun	Curah Hujan (mm) X	log X	$(\log X - \overline{\log x})^2$	(log X - log x)3
1	2007	617,00	2,79029	0,013964484	0,001650203
2	2008	183,00	2,26245	0,167823491	-0,068751017
3	2009	64,00	1,80618	0,749841296	-0,649312902
4	2010	67,00	1,82607	0,715781892	-0,605579355
5	2011	714,00	2,8537	0,032972918	0,00598737
6	2012	768,00	2,88536	0,045474485	0,009697319
7	2013	607,00	2,78319	0,012337644	0,001370403
8	2014	972,00	2,98767	0,099573393	0,031420635
9	2015	1030,00	3,01284	0,116092489	0,039555437
10	2016	607,00	2,78319	0,012337644	0,001370403
11	2017	980,00	2,99123	0,101832679	0,032496064
12	2018	475,00	2,67669	2,09752E-05	9,60634E-08
13	2019	775,00	2,8893	0,047170609	0,010244888
14	2020	686,00	2,83632	0,026965046	0,00442794
15	2021	498,00	2,69723	0,000630793	1,58427E-05
Σ	-	-	40,0817	2,14281984	-1,185406674


Hasil perhitungan dengan metode Gumbel

No	Curah hujan harian maksimum (R)	$r = R - \overline{R}$	r ²
1	617	14,14	199,9396
2	183	-419,86	176282,4196
3	64	-538,86	290370,0996
4	67	-535,86	287145,9396
5	714	111,14	12352,0996
6	768	165,14	27271,2196
7	607	4,14	17,1396
8	972	369,14	136264,3396
9	1030	427,14	182448,5796
10	607	4,14	17,1396
11	980	377,14	142234,5796
12	475	-127,86	16348,1796
13	775	172,14	29632,1796
14	686	83,14	6912,2596
15	498	-104,86	10995,6196
Total	9043		1318491,734


Data curah hujan rencana

Curah hujan	Log person	Grf. Gumbel	Analisis Gumbel
(periode	tipe III		(mm)
ulang)	(mm)		
R _{10 TH}	1.560	Tidak dapat	4.444
		digambarkan	
		karena nilai	
R _{25 TH}	3.177	Xmaks =	6.538
		500	

Kondisi saluran di lapangan

Dimensi saluran yang direncanakan

Lebar bawah b1: 1,6 m Tinggi saluran: 1,5 m Lebar atas b2: 2.2 m $W = \sqrt{0.5 \times h}$ $=\sqrt{0.5 \times 1.5}$ = 0.86 $F = (b1 \times h) + 1.5 \times b^2$ $=(1.6 \times 1.5) + (1.5 \times 2.56)$ $= 6.24 \text{ m}^2$ $O = 8,14 \times b$ $= 8,14 \times 1,6$ = 13,024 m $R = \frac{F}{o} = \frac{6,24}{13,024}$ = 0.479 $V = 1/n \times R^{2/3} \times S^{1/2}$ $=\frac{1}{0.02} \times 0.612 \times 0.14$ = 4,284 m/det $O = V \times F$ $=4,284 \times 6,24$ $= 26.73 \text{ m}^3 / \text{det} > 25.61 \text{ m}^3 / \text{detik}$

Berdasarkan perhitungan dimensi perencanaan dari penulis dengan luas penampang saluran 6,24 m² dengan debit saluran pada saat terjadi banjir 26,73 m³/det, maka dimensi saluran yang direncanakan penulis dapat menampung kebutuhan air pada saat terjadi banjir.

D. Penutup

Simpulan

- 1. Luas daerah yang akan dialiri oleh irigasi Batang Lampang adalah ±75 Ha, berdasarkan hasil perhitungan yang telah dilakukan dapat disimpulkan bahwa saluran yang direncanakan mampu untuk menanmpung debit pada saat debit maksimum.
- 2. Hasil perhitungan menggunakan metode *Gumbel* dengan R_{25TH} adalah 6.538 mm, hasil perhitungan debit saluran dengan metode *Haspers* adalah 19,45 m³/detik.

Saran

 Peranan masyarakat setempat sangat diperlukan untuk menjaga kebersihan saluran dari sedimen yang bisa menghambat kelancaran air dalam pengairi lahan pertanian, agar bangunan irigasi dapat berfungsi secara optimal dalam menyediakan kebutuhan air bagi lahan pertanian masyarakat Nagari Kajai.

Daftar Pustaka

Asrul, A., Priana, S. E., & Dewi, S. (2021). Evaluasi Saluran Sekunder Irigasi Sigata Kota Padang Panjang. *Ensiklopedia Research and Community Service Review*, *1*(1), 198-204.

Dewi, S. (2018). Menentukan Distribusi Representatif Frequensi Curahan Hujan Harian Maksimum Dengan Metodehistogram Dan Metode Parametik Di Provinsi Sumatera Barat. *Rang Teknik Journal*, 1(1).

Jarwinda, J. (2021). Analisis Curah Hujan Rencana Dengan Menggunakan Distribusi Gumbel Untuk Wilayah Kabupaten Lampung Selatan. *Journal of Science, Technology, and Visual Culture*, 1(1), 51-54.

Loebis, Joesron. (1987). Banjir Rencana Untuk Bangunan Air. Pekerjaan Umum. Jakarta.

Megayanti, Y., Priana, S. E., & Dewi, S. (2022). Perencanaan Saluran Sekunder DI Batang Timbo Abu Kecamatan Talamau Kabupaten Pasaman Barat. *Ensiklopedia Research and Community Service Review*, 1(2), 33-39.

Soebarkah, imam. (1987). Hidrologi Untuk Perencanaan Bangunan Air, Bandung: Idea Dharma.