ANALISA PEMODELAN GENERATOR MAGNET PERMANEN TIGA PHASA DENGAN SUSUNAN MAGNET ROTOR MENGIKUTI IPM – V

Rezi Hidayat, Fahmi Alfiansyah, Afif Fadila, Andi Syofian, Anggun Anugrah, Perdana Putera

Sari


This article is a study analysis for converting an automotive alternator with a maximum output of 24 volts 100 A, into a three-phase permanent magnet generator by replacing the alternator rotor with a permanent magnet rotor. The arrangement of the magnets is similar to the arrangement of an Interior Permanent Magnet (IPM) rotor in a 12-pole V model. Analysis is carried out using COMSOL Multiphysics® software, modeling permanent magnet generators adapting the shape of the alternator and the shape and number of coils on the alternator stator are maintained (not changed). Finite Element Method simulation results using N52 Neodymium Magnets on the rotor, the output voltage amplitude is 4.5 volts with an AC frequency of 50 Hz (at a speed of 500 rpm). The AC waveform of the modified generator output is not purely sinusoidal.

Keywords : Generator, Permanent Magnets, Finite Element Method, Neodymium


Teks Lengkap:

PDF

Referensi


Vehicles, A. T. (2022). Voltage-Stabilizing Method of Permanent Magnet Generator for Agricultural Transport Vehicles. 1–17.

Boldea, I. (2017). Electric Generators and Motors: an overview. CES Transactions on Electrical Machines and Systems (CES TEMS), 1(1), 3–14.

Desain, A., Generator, S., Magnet, T., Fluks, P., Menggunakan, A., & Finite, M. (2021). Analisis desain stator generator tipe magnet permanen fluks aksial menggunakan metode finite element analysis (fea) 1,2). 8(2), 149–156.

Andika, & Hamzah, A. (2018). Perancangan dan Pembuatan Generator Fluks Radial Tiga Fasa Magnet Permanen Kecepatan Rendah. Universitas Riau, 5(1), 1–8.

Motor, P., Tiga, S., Tipe, P., Pole, S., & Sinkron, G. (2019). Jurnal simetrik vol.9, no.2, desember 2019. 9(2), 197–207.

Ramana, T. V., Manaktala, S. S., Valarmathi, K., Doohan, N. V., Shetty, D. K., Kumar, H., & Akwafo, R. (2022). Energy Auditing in Three-Phase Brushless DC Motor Drive Output for Electrical Vehicle Communication Using Machine Learning Technique. Wireless Communications and Mobile Computing, 2022.

Ramadhan, A., & Tamam, M. T. (2021). Perancangan Permanent Magnet Synchronous Generator Kapasitas 22 KVA Menggunakan Metode Finite Element Method. Jurnal Riset Rekayasa Elektro, 3(2), 83–90.

Zaputra, T. P., & Gusnita, N. (2022). Analisis Pengaruh Jumlah Lilitan dan Kecepatan Putar Terhadap Efisiensi Pada Permanent Magnet Synchronus Generator 18 Slot 16 Pole. JTEV (Jurnal Teknik Elektro Dan Vokasional), 8(2), 411.

Saputra, R., & Aini, Z. (2021). Analisis Pengaruh Ketebalan dan Jenis Inti Besi Rotor Stator terhadap Karakteristik Generator Sinkron Magnet Permanen 18S16P Fluks Radial. Jurnal Sains, Teknologi Dan Industri, 18(2), 220–227.

Manishe, M. I., Hasibuan, A., & Putri, R. (2021). Perancangan Radial Flux Permanent Magnet Synchronous Generator Sebagai Pembangkit Listrik Tenaga Angin Menggunakan Finite Element Method (Fem). Jurnal Energi Elektrik, 9(2), 42.

Liu, Z. S., Fang, Z. W., & Li, X. X. (2022). Design of permanent magnet synchronous generator and anti-electromagnetic interference research. Journal of Physics: Conference Series, 2345(1).

Liang, P., Pei, Y., Chai, F., & Zhao, K. (2016). Analytical calculation of D- and Q-axis inductance for interior permanent magnet motors based on winding function theory. Energies, 9(8).

Takahashi, T., Kitao, J., Miyama, Y., Nakano, M., & Yamane, K. (2018). Permanent Magnet Type Rotating Electrical Machine. https://patents.google.com/patent/CN111149281A/en




DOI: https://doi.org/10.33559/eoj.v6i3.2288

Refbacks

  • Saat ini tidak ada refbacks.


Jumlah Kunjungan

Negara Pengunjung

Flag Counter

Lisensi Creative Commons
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.